Classification of rotational figures of equilibrium

Jeffrey Elms, Ryan Hynd, Roberto López, and John McCuan School of Mathematics, Georgia Institute of Technology 30332-0160
I. Introduction

s held together etation was later has retained im cal and mathe Among Plateau' ation of toroida solutions to the al shapes.

II. Model Equation

The energy of a rotating drop nclosing volume V is given by $E=\sigma|S|-\frac{1}{2} \rho \omega^{2} \int_{V} r^{2}$
where S is the free surface, σ is the surface tension, ρ is the density, and ω is the angular velocity.

Representing the drop's meridian curve as a graph $u=u(r)$ of the radial distance from the axis, the Euler-Lagrange equation for the equilibrium configuration is
$\frac{1}{r}\left(\frac{r u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)=-4 a r^{2}+2 \lambda$
III. Classification Method

By scaling, we may assume $a=1$ and perform an By scaling, we may assume $a=1$ and pe
initial classification through analysis of

$$
\sin \psi=\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}=-r^{3}+\lambda r+\frac{c}{r}
$$

where ψ is the angle of inclination of $u(r)$.

We refine our classification by considering
$h=u\left(r_{2}\right)-u\left(r_{1}\right)=\int_{r_{1}}^{r_{2}} \frac{\sin \psi d t}{\sqrt{1-\sin \psi^{2}}}$
which is the height difference in the endpoints of
a half period of a (periodic) meridian curve.

Spheroid

Pinched Spheroid

Anti-nodoid type

IV. Physical Drops

In order to compare a calculated meridian curve of a simply connected drop ($\mathrm{c}=0$) with an actual physical drop, the appropriate Lagrange parameter λ must be determined. The relationship between the rotation is complicated but may be is complicated but may be analyzed via the implicit function theorem in certain special cases.
V. Toroidal Figures

In 1984, R. Gulliver proved:
(1) For each $\mathrm{c} \geq 3 / 16$, there is a λ (c) for which the corresponding figure is a torus with convex cross section.
(2) There is an interval $\mathrm{C} \in(0, \varepsilon)$ and a smooth function λ (c) for which the corresponding figureis a torus.

We prove the existence of toroidal solutions for all cand the figure exhibits numerical calculations that suggest that associated with each c there is a single toroidal solution.
We show in addition that there are no toroidal solutions outside specified regions and give a solutions in these regions.
(R. Gulliver, Tori of prescribed mean curvature and the rotating drop. Soc. Math. de France)
think it very probable that if calculation could approach the general solution of this great problem, and lead directly to the determination of all the possible figures of equilibrium, the annular figure would be included among them."

VI. Discussion

Our results may be used to mode rotating liquid drops in low gravity environments with or without contacting rigid support structures.

The uniqueness of toroidal solutions and a fuller understanding of the dependence of the Lagrange paramete are subjects of ongoing interest.

